

### Power MOSFET Electrical Characteristics

#### Romeo Fan, FAE

COMPANY CONFIDENTIAL

### **Table of Contents**

- Static Characteristics
- Dynamic Characteristics
- Capacitance characteristics
- Effective output capacitance
- Switching characteristics
  - dv/dt capability
- Charge Characteristics
  - Gate charge
  - Calculation of Total Gate Charge
- Source-Drain Characteristics
- Body Diode Characteristics
  - dv/dt Capability of the Body Diode

### **Static Characteristics**

| Characteristic                    | Symbol                                       | Unit | Description                                                                                                                                                                                                                                                                                                         |  |
|-----------------------------------|----------------------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Gate leakage current              | I <sub>GSS</sub>                             | μΑ   | The leakage current that occurs when the specified voltage is applied across gate and source with drain and source short-circuited                                                                                                                                                                                  |  |
| Drain cut-off current             | I <sub>DSS</sub>                             | μA   | The leakage current that occurs when a voltage is applied across drain and source with gate and source short-circuited                                                                                                                                                                                              |  |
| Drain-source<br>breakdown voltage | V <sub>(BR)DSS</sub><br>V <sub>(BR)DSX</sub> | V    | The maximum voltage that the device is guaranteed to block between drain and source $V_{(BR)DSS}$ : With gate and source short-circuited $V_{(BR)DSX}$ : With gate and source reverse-biased                                                                                                                        |  |
| Gate threshold voltage            | V <sub>th</sub>                              | V    | V <sub>th</sub> stands for "threshold voltage." V <sub>th</sub> is the gate voltage that appears when the specified current flows between source and drain.                                                                                                                                                         |  |
| Drain-source on-<br>resistance    | R <sub>ds (on)</sub>                         | Ω    | The resistance across drain and source when the MOSFET is in the "on" state                                                                                                                                                                                                                                         |  |
| Forward<br>transfer admittance    | Yfs                                          | S    | Also called gm,  Yfs  is the ratio of the drain current variation at the output to the gate voltage variation at the input and is defined as $ Yfs  = \Delta I_D / \Delta V_{GS}$ .  Yfs  indicates the sensitivity or amplification factor of the power MOSFET.  Yfs  can be read from the $I_D$ - $V_{GS}$ curve. |  |

### **Dynamic Characteristics**

| Characteristic               | Symbol                                                                  | Unit | Description                                                                                                                                                                                  |  |
|------------------------------|-------------------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Capacitances                 | C <sub>iss</sub><br>C <sub>rss</sub><br>C <sub>oss</sub>                | pF   | $C_{iss}$ is the input capacitance, $C_{rss}$ is the reverse transfer capacitance, and $C_{oss}$ is the output capacitance. Capacitances affect the switching performance of a power MOSFET. |  |
| Effective output capacitance | C <sub>o(er)</sub>                                                      | pF   | Effective output capacitance calculated from $E_{oss}$ , which is needed to charge $C_{oss}$                                                                                                 |  |
| Gate resistance              | r <sub>g</sub>                                                          | Ω    | The internal gate resistance of a MOSFET                                                                                                                                                     |  |
| Switching time               | t <sub>r</sub><br>t <sub>on</sub><br>t <sub>f</sub><br>t <sub>off</sub> | ns   | $t_{\rm r}$ is the rise time, ton is the turn-on time, $t_{\rm f}$ is the fall time, and $t_{\rm off}$ is the turn-off time.                                                                 |  |
| MOSFET dv/dt<br>capability   | dv/dt                                                                   | V/ns | The resistance across drain and source when the MOSFET is in the "on" state                                                                                                                  |  |

### **Capacitance characteristics**

• A power MOSFET, the gate is insulated by a thin silicon oxide.

#### Capacitances

- ▶ Gate-Drain
  - gate-drain capacitance C<sub>gd</sub>
  - The structure of the gate electrode
- ▶ Gate-Source
  - gate-source capacitance C<sub>gs</sub>
  - The structure of the gate electrode
- Drain-Source terminal
  - drain-source capacitance C<sub>ds</sub>
  - vertical p-n junction.

### **Capacitance characteristics**



### **Effective output capacitance**

C<sub>o(er)</sub> is the effective output capacitance

$$\frac{C_{o(er)} \times V_{DS}^{2}}{2} = \int_{0}^{V_{DS}} C(v) \times v dv$$
$$C_{o(er)} = \frac{2}{V_{DS}^{2}} \int_{0}^{V_{DS}} C(v) \times v dv$$

▶ C(v) is a function of the VDS-dependent output capacitance Coss.

- Super-junction MOSFETs have a large output capacitance
- Switching loss occurs at the turn-on and turn-off of the MOSFET due to the charging and discharging of the output capacitance

### **Switching characteristics**

- Power MOSFETs are majority-carrier devices
- **Faster and capable of switching at higher frequencies**



#### ©2019 Power Electronic

### **Switching Time**

#### t<sub>d (on)</sub>: Turn-on delay time

gate-source voltage rises over 10% of V<sub>GS</sub> until the drainsource voltage reaches 90% of V<sub>DS</sub>

### t<sub>r</sub>: Rise time

drain-source voltage to fall from 90% to 10% of V<sub>DS</sub>

#### t<sub>on</sub>: Turn-on time

td (on) + tr

#### t<sub>d (off)</sub>: Turn-off delay time

gate-source voltage drops below 90% of V<sub>GS</sub> until the drainsource voltage reaches 10% of V<sub>DS</sub>

### t<sub>f</sub>: Fall time

drain-source voltage to rise from 10% to 90% of V<sub>DS</sub>

#### t<sub>off</sub>: Turn-off time

 $t_{d (off)} + t_{f}$ 



90%

#### (b) Input and Output Waveforms

V<sub>GS</sub>

90%

10%

 $V_{DS}$ 

# **MOSFET dv/dt capability**

- The equivalent circuit for a MOSFET consists of one MOSFET in parallel with a parasitic BJT (bipolar junction transistor)
  - If the BJT turns ON, it cannot be turned off since the gate has no control over it. This phenomenon is known as 'latchup', which can lead to device destruction.

#### Drain-source voltage is raised sharply with fast switch

- High dv/dt causes a current i go through Parasitic capacitance
  C to charge R<sub>b</sub>
  - If the voltage drop exceeds the base-emitter forward voltage (VBE) of the parasitic NPN transistor, it is forced into conduction.



(a) Cross Section of a MOSFET (Parasitic NPN Transistor)



(b) Equivalent Circuit of dv/dt-Induced Turn-On

### **Charge Characteristics**

| Characteristic       | Symbol           | Unit | Description                                                                                                                                                                                                                                                                               |  |
|----------------------|------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Total gate charge    | Qg               | nC   | The amount of charge to apply voltage (from zero to designated voltage) to gate                                                                                                                                                                                                           |  |
| Gate-source charge 1 | Q <sub>gs1</sub> | nC   | The amount of charge required for a MOSFET to begin to turn on (before dropping drain-source voltage)                                                                                                                                                                                     |  |
| Gate-drain charge    | Q <sub>gd</sub>  | nC   | As the MOSFET begins to turn on, the drain-source voltage begins to fall, chargi<br>the gate-drain capacitance. The gate-source voltage stops increasing and reache<br>the Miller plateau. From this point to the ending point of Miller plateau is know<br>the gate-drain charge period. |  |
| Gate switch charge   | Q <sub>sw</sub>  | nC   | The amount of charge stored in the gate capacitance from when the gate-source voltage has reached Vth until the end of the Miller plateau                                                                                                                                                 |  |
| Output charge        | Q <sub>oss</sub> | nC   | Drain-source charge                                                                                                                                                                                                                                                                       |  |

### **Gate charge**

- A power MOSFET turn on, a current flows to the gate, charging the gatesource and gate-drain capacitances.
- The gate charge (Q<sub>gs</sub> + Q<sub>gd</sub>) is the bare minimum charge required to switch the device on
  - $P_{g} = C \times V \text{ and } I_{g} = C \times dv/dt, \text{ the } Q_{g} = \text{Time}$ x current
    - $Q_g = i_g \times t$



### **Source-Drain Characteristics**

| Characteristic                                               | Symbol                              | Unit | Description                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------|-------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reverse drain current (DC)<br>Reverse drain current (pulsed) | I <sub>DR</sub><br>I <sub>DRP</sub> | A    | The maximum current that can flow to the body diode of a MOSFET in the forward direction                                                                                                                                                                                                 |
| Diode forward voltage                                        | V <sub>DF</sub>                     | V    | Drain-source voltage that appears when a current is applied to the body diode of a MOSFET in the forward direction                                                                                                                                                                       |
| Reverse recovery time                                        | t <sub>rr</sub>                     | ns   | The time t <sub>rr</sub> and the amount of charge Q <sub>rr</sub> required for the reverse<br>recovery current to reach zero during the reverse recovery operation of<br>the body diode under the specified test conditions. The peak current<br>during this period is I <sub>rr</sub> . |
| Diode reverse recovery charge                                | Q <sub>rr</sub>                     | μC   |                                                                                                                                                                                                                                                                                          |
| Diode peak reverse recovery current                          | I <sub>rr</sub>                     | A    |                                                                                                                                                                                                                                                                                          |
| Diode dv/dt capability                                       | dv/dt                               | V/ns | The maximum voltage ramp allowed during the reverse recovery time of the diode                                                                                                                                                                                                           |

### **Body Diode Characteristics**

- MOSFET has a equivalent diode structure between source and drain
- Reverse breakdown voltage is same as drainsource voltage V<sub>DSS</sub>





E

R

Reverse drain current



## **Body Diode dv/dt Capability**

- Peak diode recovery is defined in datasheet with allowed V<sub>DS</sub> dv/dt capability
- Body diode enters the reverse recovery state and exceeded the peak rate. This causes the drain-source voltage to increase sharply. Gate-source terminals may become higher than the threshold voltage.
  - High dv/dt causes a current i go through Parasitic capacitance C to charge R<sub>b</sub>, causes the parasitic NPN transistor to turn on
  - If the drain-source voltage V<sub>DS</sub> is high, the parasitic NPN transistor might enter secondary breakdown
  - Diode might suffer a catastrophic failure

