## POWER 总



Romeo Fan, FAE

## Table of Contents

- Static Characteristics
- Dynamic Characteristics
- Capacitance characteristics
- Effective output capacitance
- Switching characteristics
- dv/dt capability
- Charge Characteristics
$\triangleright$ Gate charge
$\triangleright \quad$ Calculation of Total Gate Charge
- Source-Drain Characteristics
- Body Diode Characteristics
$\triangleright \quad d v / d t$ Capability of the Body Diode


## Static Characteristics

| Characteristic | Symbol | Unit | Description |
| :---: | :---: | :---: | :---: |
| Gate leakage current | $\mathrm{I}_{\text {GSS }}$ | $\mu \mathrm{A}$ | The leakage current that occurs when the specified voltage is applied across gate and source with drain and source short-circuited |
| Drain cut-off current | $I_{\text {DSS }}$ | $\mu \mathrm{A}$ | The leakage current that occurs when a voltage is applied across drain and source with gate and source short-circuited |
| Drain-source breakdown voltage | $\begin{aligned} & V_{(B R) D S S} \\ & V_{(B R) D S X} \end{aligned}$ | V | The maximum voltage that the device is guaranteed to block between drain and source <br> $V_{\text {(BR)Dss }}$ : With gate and source short-circuited <br> $V_{(B R) D S X}$ : With gate and source reverse-biased |
| Gate threshold voltage | $\mathrm{V}_{\text {th }}$ | V | $\mathrm{V}_{\text {th }}$ stands for "threshold voltage." $\mathrm{V}_{\text {th }}$ is the gate voltage that appears when the specified current flows between source and drain. |
| Drain-source onresistance | $\mathrm{R}_{\text {DS (ON) }}$ | $\Omega$ | The resistance across drain and source when the MOSFET is in the "on" state |
| Forward transfer admittance | \|Yfs| | S | Also called gm, $\|\mathrm{Yfs}\|$ is the ratio of the drain current variation at the output to the gate voltage variation at the input and is defined as $\|\mathrm{Yfs}\|=\Delta \mathrm{I}_{\mathrm{D}} / \Delta \mathrm{V}_{\mathrm{Gs}}$. $\|\mathrm{Yfs}\|$ indicates the sensitivity or amplification factor of the power MOSFET. \|Yfs| can be read from the $I_{D}-V_{G S}$ curve. |

## Dynamic Characteristics

| Characteristic | Symbol | Unit | Description |
| :--- | :---: | :---: | :--- |
| Capacitances | $\mathrm{C}_{\text {iss }}$ <br> $\mathrm{C}_{\text {rss }}$ <br> $\mathrm{C}_{\text {oss }}$ | pF | $\mathrm{C}_{\text {iss }}$ is the input capacitance, $\mathrm{C}_{\text {rss }}$ is the reverse transfer capacitance, and $\mathrm{C}_{\text {oss }}$ is the <br> output capacitance. Capacitances affect the switching performance of a power <br> MOSFET. |
| Effective output <br> capacitance | $\mathrm{C}_{\mathrm{o} \text { (er) }}$ | pF | Effective output capacitance calculated from E Ess |

## Capacitance characteristics

- A power MOSFET, the gate is insulated by a thin silicon oxide.
- Capacitances
- Gate-Drain
- gate-drain capacitance $\mathrm{C}_{\mathrm{gd}}$
- The structure of the gate electrode
$\triangleright$ Gate-Source
- gate-source capacitance $\mathrm{C}_{\mathrm{gs}}$
- The structure of the gate electrode
$\triangleright$ Drain-Source terminal
- drain-source capacitance $\mathrm{C}_{\mathrm{ds}}$
- vertical $p-n$ junction.


## Capacitance characteristics

- Input capacitance
$\triangleright C_{\text {iss }}=C_{g d}+C_{g s}$
- Output capacitance
$\triangleright \quad C_{\text {oss }}=C_{\text {ds }}+C_{\text {gd }}$
- Reverse transfer capacitance
$\triangleright C_{\text {rss }}=C_{g d}$


Input capacitance $\left(\mathrm{C}_{\text {iss }}\right)=\mathrm{C}_{\mathrm{gd}}+\mathrm{C}_{\text {gs }}$
Output capacitance ( $\mathrm{C}_{\text {oss }}$ ) $=\mathrm{C}_{\mathrm{ds}}+\mathrm{C}_{\mathrm{gd}}$
Reverse transfer capacitance $\left(\mathrm{C}_{\mathrm{rss}}\right)=\mathrm{C}_{\mathrm{gd}}$

## Effective output capacitance

- $\mathrm{C}_{\text {o(er) }}$ is the effective output capacitance

$$
\begin{aligned}
& \frac{C_{o(e r)} \times V_{D S}^{2}}{2}=\int_{0}^{V_{D S}} C(v) \times v d v \\
& C_{o(e r)}=\frac{2}{V_{D S}^{2}} \int_{0}^{V_{D S}} C(v) \times v d v
\end{aligned}
$$

$\triangleright \mathrm{C}(\mathrm{v})$ is a function of the VDS-dependent output capacitance Coss.

- Super-junction MOSFETs have a large output capacitance
- Switching loss occurs at the turn-on and turn-off of the MOSFET due to the charging and discharging of the output capacitance


## Switching characteristics

- Power MOSFETs are majority-carrier devices
- Faster and capable of switching at higher frequencies

(a) Test Circuit

(b) Input and Output Waveforms


## Switching Time

- $\quad t_{d(o n)}$ : Turn-on delay time
$\triangleright$ gate-source voltage rises over $10 \%$ of $\mathrm{V}_{G S}$ until the drainsource voltage reaches $90 \%$ of $\mathrm{V}_{\text {DS }}$
- $\quad t_{r}$ : Rise time
$\triangleright$ drain-source voltage to fall from $90 \%$ to $10 \%$ of $V_{D S}$
- $\quad t_{o n}$ : Turn-on time
$\triangleright$ td (on) + tr
- $\quad t_{d \text { (off) }}$ : Turn-off delay time
gate-source voltage drops below $90 \%$ of $\mathrm{V}_{G S}$ until the drainsource voltage reaches $10 \%$ of $\mathrm{V}_{\text {DS }}$
- $\quad \mathrm{t}_{\mathrm{f}}$ : Fall time

(b) Input and Output Waveforms
$\triangleright$ drain-source voltage to rise from $10 \%$ to $90 \%$ of $V_{D S}$
- $\quad t_{\text {off }}$ : Turn-off time
$\triangleright \quad \mathrm{t}_{\mathrm{d}(\text { off })}+\mathrm{t}_{\mathrm{f}}$


## MOSFET dv/dt capability

- The equivalent circuit for a MOSFET consists of one MOSFET in parallel with a parasitic BJT (bipolar junction transistor)
$\triangleright$ If the BJT turns ON, it cannot be turned off since the gate has no control over it. This phenomenon is known as 'latchup, which can lead to device destruction.
- Drain-source voltage is raised sharply with fast switch
$\triangleright \quad$ High dv/dt causes a current i go through Parasitic capacitance $C$ to charge $R_{b}$
- If the voltage drop exceeds the base-emitter forward voltage (VBE) of the parasitic NPN transistor, it is forced into conduction.

(a) Cross Section of a MOSFET (Parasitic NPN Transistor)

(b) Equivalent Circuit of dv/dt-Induced Turn-On


## Charge Characteristics

| Characteristic | Symbol | Unit | Description |
| :--- | :---: | :---: | :--- | :--- |
| Total gate charge | $\mathrm{Q}_{\mathrm{g}}$ | nC | The amount of charge to apply voltage (from zero to designated voltage) to gate |
| Gate-source charge 1 | $\mathrm{Q}_{\mathrm{gs} 1}$ | nC | The amount of charge required for a MOSFET to begin to turn on (before dropping <br> drain-source voltage) |
| Gate-drain charge | $\mathrm{Q}_{\mathrm{gd}}$ | nC | As the MOSFET begins to turn on, the drain-source voltage begins to fall, charging <br> the gate-drain capacitance. The gate-source voltage stops increasing and reaches <br> the Miller plateau. From this point to the ending point of Miller plateau is known as <br> the gate-drain charge period. |
| Gate switch charge | $\mathrm{Q}_{\mathrm{sw}}$ | nC | The amount of charge stored in the gate capacitance from when the gate-source <br> voltage has reached Vth until the end of the Miller plateau |
| Output charge | $\mathrm{Q}_{\mathrm{oss}}$ | nC | Drain-source charge |

## Gate charge

- A power MOSFET turn on, a current flows to the gate, charging the gatesource and gate-drain capacitances.
- The gate charge $\left(Q_{g s}+Q_{g d}\right)$ is the bare minimum charge required to switch the device on
$\triangleright \mathrm{Q}_{\mathrm{g}}=\mathrm{CxV}$ and $\mathrm{I}_{\mathrm{g}}=\mathrm{Cxdv} / \mathrm{dt}$, the $\mathrm{Q}_{\mathrm{g}}=$ Time x current
- $\mathrm{Q}_{\mathrm{g}}=\mathrm{i}_{\mathrm{g}} \times \mathrm{t}$


Definition of Total Gate Charge, $\mathbf{Q}_{\mathrm{g}}$

## Source-Drain Characteristics

| Characteristic | Symbol | Unit | Description |
| :--- | :---: | :---: | :--- |
| Reverse drain current (DC) <br> Reverse drain current (pulsed) | $\mathrm{I}_{\mathrm{DR}}$ | A | The maximum current that can flow to the body diode of a MOSFET in the <br> forward direction |
| Diode forward voltage | $\mathrm{V}_{\mathrm{DF}}$ | V | Drain-source voltage that appears when a current is applied to the body <br> diode of a MOSFET in the forward direction |
| Reverse recovery time | $\mathrm{t}_{\mathrm{rr}}$ | ns | The time $\mathrm{t}_{\mathrm{rr}}$ and the amount of charge $\mathrm{Q}_{\mathrm{r}}$ required for the reverse <br> recovery current to reach zero during the reverse recovery operation of <br> the body diode under the specified test conditions. The peak current <br> during this period is $\mathrm{I}_{\mathrm{rr}}$ |
| Diode reverse recovery charge | $\mathrm{Q}_{\mathrm{rr}}$ | $\mu \mathrm{Cl}$ |  |

## Body Diode Characteristics

- MOSFET has a equivalent diode structure between source and drain
- Reverse breakdown voltage is same as drainsource voltage $\mathrm{V}_{\mathrm{DSS}}$


Reverse Recovery Time of the Body Diode in a Power MOSFET



Body diode current characteristics

## Body Diode dv/dt Capability

- Peak diode recovery is defined in datasheet with allowed $\mathrm{V}_{\mathrm{DS}} \mathrm{dv} / \mathrm{dt}$ capability
- Body diode enters the reverse recovery state and exceeded the peak rate. This causes the drain-source voltage to increase sharply. Gate-source terminals may become higher than the threshold voltage.
$\triangleright \quad$ High dv/dt causes a current i go through Parasitic capacitance $C$ to charge $R_{b}$, causes the parasitic NPN transistor to turn on
$\triangleright \quad$ If the drain-source voltage $\mathrm{V}_{\mathrm{DS}}$ is high, the parasitic NPN

(a) dv/dt Equivalent Circuit of the Body Diode transistor might enter secondary breakdown
$\triangleright$ Diode might suffer a catastrophic failure

