Power MOSFET
Electrical Characteristics

Romeo Fan, FAE
Table of Contents

- Static Characteristics
- Dynamic Characteristics
- Capacitance characteristics
- Effective output capacitance
- Switching characteristics
 - dv/dt capability
- Charge Characteristics
 - Gate charge
 - Calculation of Total Gate Charge
- Source-Drain Characteristics
- Body Diode Characteristics
 - dv/dt Capability of the Body Diode
Static Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate leakage current</td>
<td>I_{GSS}</td>
<td>μA</td>
<td>The leakage current that occurs when the specified voltage is applied across gate and source with drain and source short-circuited</td>
</tr>
<tr>
<td>Drain cut-off current</td>
<td>I_{DSS}</td>
<td>μA</td>
<td>The leakage current that occurs when a voltage is applied across drain and source with gate and source short-circuited</td>
</tr>
<tr>
<td>Drain-source breakdown voltage</td>
<td>$V_{(BR)DSS}$</td>
<td>V</td>
<td>The maximum voltage that the device is guaranteed to block between drain and source</td>
</tr>
<tr>
<td></td>
<td>$V_{(BR)DSX}$</td>
<td>V</td>
<td>$V_{(BR)DSS}$: With gate and source short-circuited</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$V_{(BR)DSX}$: With gate and source reverse-biased</td>
</tr>
<tr>
<td>Gate threshold voltage</td>
<td>V_{th}</td>
<td>V</td>
<td>V_{th} stands for "threshold voltage." V_{th} is the gate voltage that appears when the specified current flows between source and drain.</td>
</tr>
<tr>
<td>Drain-source on-resistance</td>
<td>$R_{DS (ON)}$</td>
<td>Ω</td>
<td>The resistance across drain and source when the MOSFET is in the "on" state</td>
</tr>
<tr>
<td>Forward transfer admittance</td>
<td>$</td>
<td>Y_{fs}</td>
<td>$</td>
</tr>
</tbody>
</table>
Dynamic Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitances</td>
<td>C_{iss} C_{rss} C_{oss}</td>
<td>pF</td>
<td>C_{iss} is the input capacitance, C_{rss} is the reverse transfer capacitance, and C_{oss} is the output capacitance. Capacitances affect the switching performance of a power MOSFET.</td>
</tr>
<tr>
<td>Effective output capacitance</td>
<td>$C_{o(er)}$</td>
<td>pF</td>
<td>Effective output capacitance calculated from E_{ossr} which is needed to charge C_{oss}</td>
</tr>
<tr>
<td>Gate resistance</td>
<td>r_g</td>
<td>Ω</td>
<td>The internal gate resistance of a MOSFET</td>
</tr>
<tr>
<td>Switching time</td>
<td>t_r t_{on} t_f t_{off}</td>
<td>ns</td>
<td>t_r is the rise time, t_{on} is the turn-on time, t_f is the fall time, and t_{off} is the turn-off time.</td>
</tr>
<tr>
<td>MOSFET dv/dt capability</td>
<td>dv/dt</td>
<td>V/ns</td>
<td>The resistance across drain and source when the MOSFET is in the "on" state</td>
</tr>
</tbody>
</table>
Capacitance characteristics

- A power MOSFET, the gate is insulated by a thin silicon oxide.
- **Capacitances**
 - Gate-Drain
 - gate-drain capacitance C_{gd}
 - The structure of the gate electrode
 - Gate-Source
 - gate-source capacitance C_{gs}
 - The structure of the gate electrode
 - Drain-Source terminal
 - drain-source capacitance C_{ds}
 - vertical p-n junction.
Capacitance characteristics

- **Input capacitance**
 \[C_{iss} = C_{gd} + C_{gs} \]

- **Output capacitance**
 \[C_{oss} = C_{ds} + C_{gd} \]

- **Reverse transfer capacitance**
 \[C_{rss} = C_{gd} \]
Effective output capacitance

- $C_{o(er)}$ is the effective output capacitance

$$\frac{C_{o(er)} \times V_{DS}^2}{2} = \int_0^{V_{DS}} C(v) \times vdv$$

$$C_{o(er)} = \frac{2}{V_{DS}^2} \int_0^{V_{DS}} C(v) \times vdv$$

- $C(v)$ is a function of the VDS-dependent output capacitance $Coss$.

- Super-junction MOSFETs have a large output capacitance
- Switching loss occurs at the turn-on and turn-off of the MOSFET due to the charging and discharging of the output capacitance
Switching characteristics

- Power MOSFETs are majority-carrier devices
- Faster and capable of switching at higher frequencies
Switching Time

- $t_{d(\text{on})}$: Turn-on delay time
 - gate-source voltage rises over 10% of V_{GS} until the drain-source voltage reaches 90% of V_{DS}

- t_r: Rise time
 - drain-source voltage to fall from 90% to 10% of V_{DS}

- t_{on}: Turn-on time
 - $t_{d(\text{on})} + t_r$

- $t_{d(\text{off})}$: Turn-off delay time
 - gate-source voltage drops below 90% of V_{GS} until the drain-source voltage reaches 10% of V_{DS}

- t_f: Fall time
 - drain-source voltage to rise from 10% to 90% of V_{DS}

- t_{off}: Turn-off time
 - $t_{d(\text{off})} + t_f$
MOSFET dv/dt capability

- The equivalent circuit for a MOSFET consists of one MOSFET in parallel with a parasitic BJT (bipolar junction transistor)
 - If the BJT turns ON, it cannot be turned off since the gate has no control over it. This phenomenon is known as ‘latchup’, which can lead to device destruction.

- Drain-source voltage is raised sharply with fast switch
 - High dv/dt causes a current i go through Parasitic capacitance C to charge R_b
 - If the voltage drop exceeds the base-emitter forward voltage (VBE) of the parasitic NPN transistor, it is forced into conduction.
Charge Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total gate charge</td>
<td>Q_g</td>
<td>nC</td>
<td>The amount of charge to apply voltage (from zero to designated voltage) to gate</td>
</tr>
<tr>
<td>Gate-source charge 1</td>
<td>Q_{gs1}</td>
<td>nC</td>
<td>The amount of charge required for a MOSFET to begin to turn on (before dropping drain-source voltage)</td>
</tr>
<tr>
<td>Gate-drain charge</td>
<td>Q_{gd}</td>
<td>nC</td>
<td>As the MOSFET begins to turn on, the drain-source voltage begins to fall, charging the gate-drain capacitance. The gate-source voltage stops increasing and reaches the Miller plateau. From this point to the ending point of Miller plateau is known as the gate-drain charge period.</td>
</tr>
<tr>
<td>Gate switch charge</td>
<td>Q_{sw}</td>
<td>nC</td>
<td>The amount of charge stored in the gate capacitance from when the gate-source voltage has reached V_{th} until the end of the Miller plateau</td>
</tr>
<tr>
<td>Output charge</td>
<td>Q_{oss}</td>
<td>nC</td>
<td>Drain-source charge</td>
</tr>
</tbody>
</table>
Gate charge

- A power MOSFET turn on, a current flows to the gate, charging the gate-source and gate-drain capacitances.
- The gate charge ($Q_{gs} + Q_{gd}$) is the bare minimum charge required to switch the device on.
 - $Q_g = C \times V$ and $I_g = C \times \frac{dv}{dt}$, the $Q_g = \text{Time} \times \text{current}$
 - $Q_g = i_g \times t$
Source-Drain Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse drain current (DC)</td>
<td>I_{DR}</td>
<td>A</td>
<td>The maximum current that can flow to the body diode of a MOSFET in the forward direction.</td>
</tr>
<tr>
<td>Reverse drain current (pulsed)</td>
<td>I_{DRP}</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Diode forward voltage</td>
<td>V_{DF}</td>
<td>V</td>
<td>Drain-source voltage that appears when a current is applied to the body diode of a MOSFET in the forward direction.</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{rr}</td>
<td>ns</td>
<td>The time t_{rr} and the amount of charge Q_{rr} required for the reverse recovery current to reach zero during the reverse recovery operation of the body diode under the specified test conditions. The peak current during this period is I_{rr}.</td>
</tr>
<tr>
<td>Diode reverse recovery charge</td>
<td>Q_{rr}</td>
<td>μC</td>
<td></td>
</tr>
<tr>
<td>Diode peak reverse recovery current</td>
<td>I_{rr}</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Diode dv/dt capability</td>
<td>dv/dt</td>
<td>V/ns</td>
<td>The maximum voltage ramp allowed during the reverse recovery time of the diode.</td>
</tr>
</tbody>
</table>
Body Diode Characteristics

- MOSFET has a equivalent diode structure between source and drain
- Reverse breakdown voltage is same as drain-source voltage V_{DSS}
Peak diode recovery is defined in datasheet with allowed V_{DS} dv/dt capability.

Body diode enters the reverse recovery state and exceeded the peak rate. This causes the drain-source voltage to increase sharply. Gate-source terminals may become higher than the threshold voltage.

- High dv/dt causes a current i go through Parasitic capacitance C to charge R_b, causes the parasitic NPN transistor to turn on.
- If the drain-source voltage V_{DS} is high, the parasitic NPN transistor might enter secondary breakdown.
- Diode might suffer a catastrophic failure.